Speech comprehension is correlated with temporal response patterns recorded from auditory cortex.
نویسندگان
چکیده
Speech comprehension depends on the integrity of both the spectral content and temporal envelope of the speech signal. Although neural processing underlying spectral analysis has been intensively studied, less is known about the processing of temporal information. Most of speech information conveyed by the temporal envelope is confined to frequencies below 16 Hz, frequencies that roughly match spontaneous and evoked modulation rates of primary auditory cortex neurons. To test the importance of cortical modulation rates for speech processing, we manipulated the frequency of the temporal envelope of speech sentences and tested the effect on both speech comprehension and cortical activity. Magnetoencephalographic signals from the auditory cortices of human subjects were recorded while they were performing a speech comprehension task. The test sentences used in this task were compressed in time. Speech comprehension was degraded when sentence stimuli were presented in more rapid (more compressed) forms. We found that the average comprehension level, at each compression, correlated with (i) the similarity between the frequencies of the temporal envelopes of the stimulus and the subject's cortical activity ("stimulus-cortex frequency-matching") and (ii) the phase-locking (PL) between the two temporal envelopes ("stimulus-cortex PL"). Of these two correlates, PL was significantly more indicative for single-trial success. Our results suggest that the match between the speech rate and the a priori modulation capacities of the auditory cortex is a prerequisite for comprehension. However, this is not sufficient: stimulus-cortex PL should be achieved during actual sentence presentation.
منابع مشابه
Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.
Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activat...
متن کاملThe Tracking of Speech Envelope in the Human Cortex
Humans are highly adept at processing speech. Recently, it has been shown that slow temporal information in speech (i.e., the envelope of speech) is critical for speech comprehension. Furthermore, it has been found that evoked electric potentials in human cortex are correlated with the speech envelope. However, it has been unclear whether this essential linguistic feature is encoded differentia...
متن کاملContributions of sensory input, auditory search and verbal comprehension to cortical activity during speech processing.
We studied eight normal subjects in an fMRI experiment where they listened to natural speech sentences and to matched simple or complex speech envelope noises. Neither of the noises (simple or complex) were understood initially, but after the corresponding natural speech sentences had been heard, comprehension was close to perfect for the complex but still absent for the simple speech envelope ...
متن کاملEffects of aging on the response of single neurons to amplitude-modulated noise in primary auditory cortex of rhesus macaque.
Temporal envelope processing is critical for speech comprehension, which is known to be affected by normal aging. Whereas the macaque is an excellent animal model for human cerebral cortical function, few studies have investigated neural processing in the auditory cortex of aged, nonhuman primates. Therefore, we investigated age-related changes in the spiking activity of neurons in primary audi...
متن کاملThe right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.
In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 23 شماره
صفحات -
تاریخ انتشار 2001